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Abstract: This study introduces a low-power analog integrated Euclidean distance radial basis
function classifier. The high-level architecture is composed of several Manhattan distance circuits
in connection with a current comparator circuit. Notably, each implementation was designed with
modularity and scalability in mind, effectively accommodating variations in the classification pa-
rameters. The proposed classifier’s operational principles are meticulously detailed, tailored for
low-power, low-voltage, and fully tunable implementations, specifically targeting biomedical appli-
cations. This design methodology materialized within a 90 nm CMOS process, utilizing the Cadence
IC Suite for the comprehensive management of both the schematic and layout design aspects. Dur-
ing the verification phase, post-layout simulation results were meticulously cross-referenced with
software-based classifier implementations. Also, a comparison study with related analog classifiers is
provided. Through the simulation results and comparative study, the design architecture’s accuracy
and sensitivity were effectively validated and confirmed.

Keywords: analog VLSI; low-power design; cardiovascular disease; machine learning; analog classifiers

1. Introduction

In the realm of biomedical engineering, the integration of machine learning (ML)
stands as a pioneering force reshaping the landscape of healthcare and technological ad-
vancements [1]. ML algorithms have emerged as invaluable tools, revolutionizing the
analysis of complex biological data, such as genomic sequences, medical images, and
physiological signals [2]. Through sophisticated pattern recognition and predictive mod-
eling, these algorithms unveil intricate relationships within biomedical datasets, offering
insights that were once elusive [3]. This synergy between machine learning and biomedical
engineering not only expedites the discovery of novel treatments and diagnostic tools,
but also fosters personalized healthcare approaches, tailoring interventions to individual
genetic profiles and disease susceptibilities [4].

The convergence of ML and biomedical engineering creates a new era of precision
medicine, transcending traditional medical paradigms [5]. By harnessing vast datasets
and employing intricate algorithms, researchers can decipher the underlying mechanisms
of diseases, unlocking unprecedented avenues for early detection and intervention [6].
Moreover, these innovations catalyze the development of smart medical devices and
systems, facilitating real-time patient monitoring, diagnostics, and therapy optimization [7].
As ML algorithms continue to evolve and adapt, the synergy with biomedical engineering
not only augments our understanding of intricate biological systems, but also propels
the translation of research findings into tangible solutions that enhance patient care and
outcomes [8].

The fusion of wearable devices with ML in biomedical engineering represents a
transformative synergy that redefines the landscape of personalized healthcare [9]. These
wearable sensors, ranging from smartwatches to biosensing patches, generate a torrent of
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real-time physiological data, capturing intricate details of an individual’s health status [10].
ML algorithms, adept at deciphering patterns within these vast datasets, enable the extrac-
tion of meaningful insights, facilitating early disease detection, continuous monitoring,
and personalized interventions [11]. This amalgamation not only empowers individuals
to actively engage in their well-being, but also fosters a proactive healthcare approach,
where predictive analytics and adaptive algorithms guide tailored interventions, optimizing
health outcomes and revolutionizing the paradigm of preventive medicine [12].

Regarding biomedical engineering, the necessity of low-power solutions stands as
a pivotal imperative, driving innovation towards more-efficient and -sustainable health-
care technologies [13]. The quest for low-power consumption in biomedical devices is
paramount, particularly in wearable sensors, implantable devices, and point-of-care diag-
nostics [14]. These solutions not only enhance patient comfort and compliance, but also
extend device lifespans while minimizing the need for frequent interventions or replace-
ments [15]. Moreover, low-power technologies play a critical role in enabling continuous
monitoring, facilitating real-time data acquisition and transmission without imposing
excessive energy demands [16]. As the demand for portable, remote monitoring devices
surges, low-power solutions not only optimize battery life, but also pave the way for the
seamless integration of technology into everyday life, ensuring prolonged and unobtrusive
monitoring for improved patient outcomes [17]. The development of such energy-efficient
solutions represents a fundamental pillar in advancing biomedical engineering, fostering
the creation of scalable, sustainable, and patient-centric healthcare innovations [18].

Emerging computing paradigms, like analog computing, are poised to revolutionize
biomedical engineering by offering novel approaches to process and analyze complex
biological data, with low power consumption [19–21]. Analog computing, with its abil-
ity to handle continuous signals and perform computations closer to the natural world’s
analog nature, presents a promising frontier in modeling biological systems [19,20]. This
paradigm’s unique capacity to mimic biological processes, such as neural networks or
physiological responses, holds tremendous potential in decoding intricate biological mech-
anisms and optimizing healthcare solutions [19,20]. By leveraging the inherent parallelism
and efficiency of analog computations, biomedical engineers can create innovative plat-
forms capable of rapid and nuanced analysis of biological signals, leading to breakthroughs
in diagnostics, personalized treatments, and the development of biologically inspired com-
puting systems tailored to address healthcare challenges with unparalleled precision and
efficiency [22].

Motivated by the necessity for low-power smart biosensors [23,24], this study com-
bines sub-threshold analog computing techniques with ML methodologies [25]. The present
work introduces a low-power (less than 430 nW), low-voltage (0.6 V), analog integrated
Euclidean distance radial basis function (RBF) classifier, tailored for real-world biomedical
classification problems [26]. This methodology is grounded upon an RBF mathematical
model [27], employing two primary sub-circuits. Core components include an ultra-low-
power Manhattan (approximating Euclidean) distance function circuit [28] and current
comparator circuit [29]. Experiments were carried out using a TSMC 90nm CMOS tech-
nique, employing the Cadence IC design Suite, and contrasted with a software-oriented
execution. Moreover, the efficiency of this design was validated via Monte Carlo assessment,
affirming its responsiveness and operational effectiveness.

The remainder of this document is structured as outlined below. Section 2 covers
the contextual framework of this research. This encompasses an examination of existing
literature and the mathematical model employed. In Section 3, we introduce the outlined
high-level configuration of the analog classifier. Moreover, a detailed analysis of the
primary components constituting the analog classifier is presented. Section 4 delves into
the validation of the proposed architecture using a real-world cardiovascular dataset.
Included within this section are comparative evaluations between hardware and software
implementations, along with sensitivity assessments. Section 5 comprises a comparative
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study and discussion of the findings. Lastly, in Section 6, conclusive remarks summarizing
the discoveries and implications of this investigation are provided.

2. Background
2.1. Related Literature

The current global landscape is inundated with a diverse range of data formats—text,
images, videos, and more—which are projected to continue growing significantly in the
future [30,31]. Machine learning (ML) stands as a promising avenue for distilling meaning
from this vast pool of data. Being interdisciplinary in nature, ML merges with mathematical
domains like statistics, information theory, game theory, and optimization [27,32]. This
fusion of methodologies and technologies acts as a conduit for effectively managing this
deluge of data. Moreover, automated algorithms possess the capability to uncover mean-
ingful patterns or hypotheses that might evade human perception. While traditionally
confined to software execution, there is a rising trend towards adapting these algorithms
and models for hardware-friendly implementations [33,34].

Three distinct hardware design methodologies emerge, each with its own merits
and limitations. These approaches encompass analog, digital, and mixed-mode imple-
mentations. Digital circuits, commonly employed in ML applications, offer advantages
in achieving heightened classification accuracy, adaptability, and programmability [35].
However, they pose significant challenges in terms of high power consumption and spatial
requirements due to their intensive data transactions and rapid operations. In contrast,
specialized analog hardware ML architectures offer cost-effective parallelism through low-
power computation [36]. Yet, accuracy faces challenges due to imprecise circuit parameters
caused by noise and limited precision. Furthermore, certain mixed-mode architectures
leverage both analog and digital techniques to achieve reduced power consumption and
compact footprints [37]. However, these solutions contend with additional costs associated
with domain conversion.

Architectures tailored specifically to ML algorithms and models in an analog hardware
implementation leverage circuits grounded in Gaussian functions [38]. A subsection con-
solidates the distinctive features of system-level implementations integrated with Gaussian
function circuitry. The proposed ML systems encompass various neural networks such
as radial basis function neural networks (RBF NNs) [39–49], offering a comprehensive
design framework. The related works [41,44,45,48,50] have fabricated and tested the
classifier. Either toy datasets or application-specific implementations have been analyzed.
Additionally, these systems include other neural networks like multi-layer perceptron
(MLP), the radial basis function network (RBFN) [44,50], the Gaussian RBF NN (GRBF
NN) [51,52], the Gaussian mixture model (GMM) [53], Bayes classifiers [54], K-means-based
classifiers [55], voting classifiers [56], fuzzy classifiers [57], threshold classifiers [58], and cen-
troid classifiers [59]. Moreover, other algorithms and classifiers like support vector machine
(SVM) [60–62], support vector regression (SVR) [63], single-class support vector domain
description (SVDD) [64], pattern-matching classifiers [65,66], vector quantizers [67,68], a
deep ML (DML) engine [69], a similarity evaluation circuit [70], a long short-term mem-
ory (LSTM) [71–74], and a self-organizing map (SOM) [75] are encompassed within this
spectrum. Gaussian function circuits form the fundamental basis for executing two crucial
functions essential to various ML algorithms: (a) kernel density and (b) distance computa-
tion. Most of these applications cater to input dimensions below 65 dimensions, with some
instances not specifying an upper limit [40,50,51,67], thus accommodating high-definition
image classification.

Based on the above analysis and bibliography, most classifiers presented have been
general-purpose. More specifically, they presented a generalized topology and tested it
on toy datasets [39–49]. On the other hand, there are application-specific implementations
that combine data from real-world datasets related to biomedical engineering, computer
vision, image classification, navigation, fuzzy control, sensor fusion, etc. [39–49]. To carry
out an on-chip classification process, fundamental key issues such as implementing more
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complex features in the analog domain (feature extraction) need to be addressed [76,77].
Other solutions to this include a digital implementation and achieving conversion through
low-power current-mode digital-to-analog converters (DACs) [78]. Additionally, reduc-
ing power consumption in the analog front-end, which performs the appropriate signal
processing, is necessary [79]. Furthermore, the need for low-power non-volatile memories
is evident, which will solve the issue of storing data extracted from training [80]. Obvi-
ously, the combination of pure analog with memristors or neuromorphic or mixed-signal
implementations would be some of the solutions to the existing problems [81]. However,
since the ultimate goal is low power consumption, a more-analog IC approach is desirable.
Finally, choosing the appropriate algorithm for each dataset is crucial and should have its
own weight in the study.

2.2. Mathematical Model

RBFs represent real, positive-valued functions reliant on the distance between an
input vector and a fixed point [27,82]. The proximity of the input to the fixed point
inversely correlates with the RBF’s value. These functions include the Euclidean, Man-
hattan, and polyharmonic spline, among others. Commonly employed for mathematical
approximations, interpolations, serving as activation functions in neural networks (NN), or
functioning as kernels in ML algorithms, RBFs hold versatile applications. A multivariate
Euclidean RBF is formulated based on the Euclidean norm. The Euclidean distance, also
known as the two-norm distance or Euclidean norm, quantifies the direct distance between
two points in a Euclidean space. In Rn, the Euclidean distance between two points, p and q,
is computed using the Euclidean norm as follows:

dc(X) = ||p − q|| =
√
(p1 − q1)2 + (p2 − q2)2 + (pn − qn)2. (1)

The classifier’s output corresponds to the class having the shortest distance from the
input vector:

y = argmin
c∈{1,...,Ncla}

{dc(X)}. (2)

Based on this distance metric, the overall classifier determines the winning class by
applying the argmin operator in this metric.

The implementation presented in the next section is based on an approximation of
the aforementioned mathematical model. This specific mathematical model describes
the operation of the software-based classifier, which is approached with the proposed
architecture. Additionally, the circuit used for distance calculation is also an approximation
of the Euclidean norm of the software. The above approaches were made with the aim
of low-power operation, that is to have an implementation with the minimum possible
power supply and the operation of all transistors in the sub-threshold region (low-voltage
and low-current). Furthermore, low power consumption is based on the behavior of the
structural element itself (activation circuit), which does not lose its behavior even with
small currents. Also, the same implementation could be achieved both using transistors
operating in saturation (non power-efficient) and with a structural element that would
approximate the Euclidean distance with greater accuracy (more-complex implementation).
Finally, the high-level architecture itself could be different using more structural blocks,
but it is not certain whether it would increase the accuracy.

3. Proposed Architecture and Main Circuits

Exploring the fundamental concept of the RBF-based classifier takes precedence in this
segment. To illuminate the reasoning behind this particular design, envision a scenario: the
classification of Ncla separate classes (referred to as class), each with Nd inputs (features).
This adaptability expands to include the accommodation of diverse input dimensions
and classes.
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The diagram illustrating the proposed structure for the analog integrated RBF clas-
sifier is illustrated in Figure 1. Following the formulation of the classification problem
outlined previously, the classifier is composed of a singular current comparator (CC) block
encompassing Ncla inputs and an equivalent number of classes. Each of these classes com-
prises Nd sub-cells, delineating Nd features. These sub-cells operate as circuits embodying
the Manhattan distance (as the approximation of the Euclidean one), receiving Nd inputs.
Their function involves computing the distance of an input vector X associated with a
particular class by utilizing the Manhattan distance for each feature, as described in the
mathematical model.

Class 1

IoutIinNd

Ir1

IrNd

...

IinNd

I(1)r1

I(1)rNd

IinNd

I(2)r1

I(2)rNd

...

IinNd

I(Ncla)r1

I(Ncla)rNd

CC

Iout1Iin1

Iin2

IinNcla

...
Iout2

IoutNcla

...

Iout1

Iout2

IoutNcla

Iin1
...

Iin1

Class Ncla

IoutIinNd

Ir1

IrNd

...

Iin1
...

Iin1

Class 2

IoutIinNd

Ir1

IrNd

...

Iin1
...

Iin1

Figure 1. Analog integrated RBF-based classifier with Ncla classes and Nd features. This is a concep-
tual design describing the proposed architecture.

Also, section analysis thoroughly examines the primary building circuits crucial for
implementing the RBF-based classifier. Each classifier necessitates two key blocks: the
class and a CC. Additionally, every cell demands two primary components: the Manhattan
distance circuit (MDC) and cascode current mirrors (CMs). To uphold precision and reduce
potential distortions, this summation process within a class is achieved by employing
CMs, as shown in Figure 2. The dimensions of the transistors within each cascode current
mirror are W

L = 3.2 µm
1.6 µm . These class cells essentially function as multidimensional distance

circuitry with Nd inputs. Employing Nd MDCs, as depicted in Figure 2, results in the
collective output simulating an Nd-dimensional Manhattan distance function. The indi-
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vidual parameters (Ir) for each MDC are independently adjusted. The foundation of the
architectural design methodology lies in the prioritization of employing ultra-low-power
circuits as fundamental elements in constructing the core cells. As a result, all transistors
within the architecture function within the sub-threshold range. The classification outcome
remains unaffected by the inherent current noise in the utilized circuits, as its worst-case
value, determined post-simulations, remained below 20 pA—well within the operational
frequency range (less than 1 kHz). Given its low-power implementation, the power supply
voltages were configured as VDD = −VSS = 0.3 V, while Ir ranged between 3 and 12 nA.

VDD

Ibias

MDC 1

Ibias
Iin1

✁ ✁

VSS

VSS

VDD

VDD

IoutIr1

Iin

Ir
Iout1

CM

VDD

Ibias

MDC Nd

Ibias
IinNd

✁ ✁

VSS

VSS

VDD

VDD

IoutIrNd

Iin

Ir
IoutNd

CM

...

Ioutk

Figure 2. Analog integrated implementation of a class with Nd features. Extra CMs are employed in
order to deal with potential distortions.

To implement the Manhattan distance function as defined in the mathematical model,
we utilized a current-mode MDC [28], illustrated in Figure 3. Operating in a translinear
manner, this circuit approximates the mathematical expression: ∥Iin − Ir∥. The summation
process within the current domain is straightforward, accomplished by connecting wires
containing the currents. Moreover, to optimize the mirroring performance, even with low
bias currents, cascode CMs have been integrated. The behavior of the circuit was verified
through the simulation results in Figure 4. Information regarding the dimensions of the
transistors can be found in Table 1.

Table 1. MDC transistors’ dimensions.

NMOS W/L (µm/µm) PMOS W/L (µm/µm)

Mn1, Mn2 2.8/0.4 Mp1–Mp4 1.6/1.6
Mn3, Mn4 1.6/1.6 Mp5, Mp6 1.6/1.6
Mn5–Mn8 3.2/1.6 Mp7, Mp8 2.4/1.6

The next circuit under consideration is the CC. Since, in this work, a 2-class classifica-
tion problem is analyzed, a cascaded winner-takes-all (WTA) circuit was employed. This
circuit is used as an argmax operator. In this work, since we need the smallest distance,
the winner is described by the minimum output current (for a two-class problem). For a
generic illustration, an argmin operator is necessary.

The analysis focuses on the behavior of a cascaded winner-takes-all (WTA) mechanism.
To understand the modified WTA circuit employed in this study, a concise examination
of the conventional Lazzaro WTA circuit is referenced [29]. The Lazzaro WTA circuit
setup involves Ncla neurons interconnected, sharing a common Ibias current, as depicted in
Figure 5. Each neuron represents a distinct class and independently manages its input and
output functions. Among these neurons, the one receiving the highest input current gener-
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ates a non-zero output equal to Ibias, while the rest produce an output of zero. Scenarios
with similar input currents may result in multiple winners, a situation often considered
undesirable in most classification contexts.

✁ ✁

Mp2

Ibias

VSS

Mp4
Mp3

VDD

Mp6

Mp8
Mp7

VDD

✁ ✁

Iout

Mp5Mp1

Mn1
Mn2

Mn3

Iin

VDD

Mn5

Mn6

Mn7 Mn8Mn4

✁ ✁

VSS
Figure 3. MDC for the realization of the Manhattan distance. Iout is the output of the circuit, which
has the lowest value for Iin = Ir.
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Figure 4. Parametric analysis of the implemented MDC over the circuit’s parameters.
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✄ ☎
✟Mn2

✄☎
✟Mn1

VSS

✜

✢ ☞ ✣ ✤Iin1

✁ ✁

VDD
Ion1

    NMOS 
Neuron Cell 1

NMOS
Neuron Cell 2

✁ ✁

VSS

Ion2

✁ ✁

IonNcla

✁ ✁

VDD

Iin2

NMOS
Neuron Cell Ncla

✁ ✁

VSS

✁ ✁

VDD

IinNcla

...

Ibias
✁ ✁

VSS
Figure 5. A Ncla-neuron standard Lazzaro NMOS winner-takes-all (WTA) circuit.

One approach to tackle this challenge involves implementing a cascaded WTA circuit,
illustrated in Figure 6. This devised setup integrates three WTA circuits interconnected in a
cascaded manner [83]. Figure 7 provides visual representations of the one-dimensional de-
cision boundaries for both the traditional Lazzaro WTA circuit and the proposed cascaded
version. Notably, the cascaded WTA circuit exhibits considerably sharper decision bound-
aries compared to the basic Lazzaro WTA circuit. As a result, the cascaded topology emerges
as the more-suitable choice for the critical argmax operation of the classifier (though argmin
might be more appropriate for a generic classifier). The transistor dimensions for both the
NMOS and PMOS neurons in Figure 6 were configured at W/L = 0.4 µm/1.6 µm. The
preference for elongated transistors was driven by the necessity for reduced noise and
enhanced linearity, which are pivotal for the effective execution of the argmax operator.

...

✜

✢ ☞ ✣ ✤

✁ ✁

Mn2Mn1

Ibias

VDD

VSS

Mn5Mn4

Ibias

Iin1,N1

Iin2,N1

✜

✢ ☞ ✣ ✤

✁ ✁

VDD

Iin1

✁ ✁

VDD

Iin2
Ion1,N1

Ion2,N1

NMOS WTA

Ibias

Iip1,P1

Iip2,P1

PMOS WTA

Iout1
Iout2

✁ ✁

Mp4Mp3

Ibias

VSS

Mp2Mp1

VDD

✁ ✁

VSS

VSS

VDD

✁ ✁

VDD

Iop1,P1
Iop2,P1

Iin1,N2

Iin2,N2

Ion1,N2
Ion2,N2

NMOS WTA

Ibias
✁ ✁

VSS

VSS

Mn3

Mn6

IinNcla,N1

✁ ✁

VDD

IinNcla

IonNcla,N1 IoutNcla

... ... ...... ... ... ... ... ...
IipNcla,P1

IopNcla,P1 IinNcla,N2
IonNcla,N2

Figure 6. A cascaded NMOS–PMOS–NMOS WTA circuit. It is utilized to improve the performance
of the standard WTA circuit.
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Figure 7. Decision boundaries of the standard and the cascaded WTA circuit.

4. Application Example and Simulation Results

In this segment, the performance of the proposed classifier is evaluated using real-
world data related to cardiovascular disease prediction [26] to validate its functionality.
The classifier was developed utilizing the Cadence IC suite within a TSMC 90 nm CMOS
process. All simulation outcomes were based on the layout (post-layout simulations),
represented in Figure 8. This consists of Ncla = 2 classes and Nd = 11 features. The
Cardiovascular Disease Dataset available on Kaggle presents a comprehensive collection of
health-related data associated with individuals susceptible to cardiovascular issues. This
dataset encompasses a range of attributes that are vital in predicting the likelihood of
cardiovascular disease in patients. It comprises both numerical and categorical features,
including age, gender, height, weight, blood pressure measurements, cholesterol levels,
glucose levels, and various lifestyle indicators like smoking habits and physical activity.
Each entry in this dataset is linked to a binary classification label indicating the presence or
absence of cardiovascular disease.

284μm

22
7μ
m

Figure 8. The implemented layout related to the proposed classifier. The common centroid technique
is used in order to minimize random effects over PVT variations.
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Notably, this dataset provides a rich resource for exploratory data analysis and predic-
tive modeling. It holds records for a considerable number of patients, allowing for robust
statistical analysis and ML model training. The dataset’s diversity in features provides a
comprehensive scope for feature engineering, model validation, and evaluation, making it
an invaluable asset for researchers, data scientists, and healthcare professionals aiming to
develop predictive models or derive meaningful insights regarding cardiovascular health
and associated risk factors.

Based on the proposed design methodology and the simulation results of the software
implementation, the generic RBF-based classifier consists of NCla = 2 classes and Nd = 11 input
dimensions. The high-level architecture of this classifier is illustrated in Figure 1. Specifically,
each class comprises two 11-D MDCs, representing the clusters, along with the current
mirrors utilized to aggregate the output currents of each cluster (considering we have only
one cluster per class). Figure 9 showcases the classification accuracy for both the proposed
hardware and software implementations, covering a total of 20 distinct training test cases
for the relevant dataset. These results are also summarized in Table 2. Regarding sensitivity
analysis, the Monte Carlo histogram displayed in Figure 10, comprising 100 runs, exhibits
a mean value of µM = 84.25% and a standard deviation of σM = 1.23%.

Figure 9. Classification results of the proposed architecture and the equivalent software model on the
related dataset over 20 iterations.

Table 2. Proposed architecture’s accuracy for the related dataset (over 20 iterations).

Method Best Worst Mean Variance

Software 87.90% 79.80% 85.10% 1.87%
Hardware 86.60% 78.40% 82.50% 1.93%

Based on the post-layout results presented, both the individual building blocks and
the high-level architecture exhibited the desired behavior. The MDC approached the
Mahalanobis distance almost entirely, with slight deviations attributed to mismatches in
the mirrors and the early effect phenomenon. It is noteworthy that, for Iin = Ir, the circuit
produced the minimum output, which is the desired outcome. Regarding the high-level
architecture, the post-layout results demonstrated robust behavior as there was minimal
deviation compared to the software accuracy and a slight variance in the Monte Carlo
analysis. Furthermore, the nature of the WTA provides a significant advantage even if the
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currents have small deviations from the theoretical value. Specifically, high or low values
will occur at the respective outputs, depending on the difference in the current values,
rather than the exact value.

Figure 10. Post-layout Monte Carlo simulation results of the proposed architecture on the related
dataset with µM = 84.25% and σM = 1.23% (for 1 of the previous 20 iterations).

5. Comparison and Discussion

The literature highlights a trend where analog classifiers are predominantly cus-
tomized for specific applications. Comparing various ML models or hardware implemen-
tations on a unified application to derive equitable results poses a significant challenge.
However, this challenge presents an opportunity to tailor analog classifiers for a shared
application, streamlining performance evaluation encompassing both ML models and
alternative methods. Table 3 provides an overview of the performance comparisons across
various related classifiers. In the context of cardiovascular classification, the Bayes [36],
GMM [36], RBF [36,39], LSTM [71], K-means [55], Bayesian [36], RBF neural network
(NN) [41], fuzzy [57], SVM [36,42], threshold [36], MLP [50], SVR [63], and centroid-
based [36] classifiers are summarized.

This research proposes a solution that strikes a balance between accuracy, power
efficiency, and energy consumption per classification when compared to similar classi-
fiers in the domain. In this particular application, handling high input dimensionality
is crucial. The suggested configuration holds a significant advantage by eliminating the
need for principal component analysis (PCA), allowing the incorporation of all 11 input
dimensions without losing vital information. Moreover, it manages more than 20 features
without necessitating PCA, unlike cascaded implementations. In contrast, many alternative
structures must reduce the dimensions to 16 or fewer (for more-complex problems) to
attain optimal accuracy, a significant limitation in previous similar studies [36,41,42,57,63].
While the proposed classifier exhibits proficiency in accurately classifying a wider range
of classes, a binary classification scenario was chosen for a fair comparison with binary
analog classifiers [36,57].

Regarding classification accuracy, the proposed architecture surpassed most of its
counterparts, except MLP [50], LSTM [71], and K-means [55]. Despite achieving higher
accuracy, these models entail increased complexity, power consumption, and a larger
silicon area due to component numbers. Conversely, the threshold classifier recorded the
lowest power consumption among the other classifiers, albeit sacrificing accuracy and
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processing speed due to its simplistic model design [36]. In biomedical applications of this
nature, swift processing speed is not crucial due to their infrequent occurrence. Hence, in
this approach, processing speed is traded for heightened accuracy and optimized power
consumption. Additionally, it boasts lower energy consumption per classification compared
to all other classifiers.

As shown in Table 3, the proposed implementation achieved the lowest consumption.
This confirms the aim of this particular study. More specifically, through the use of the
sub-threshold operating region, a significant reduction in consumption was achieved.
Additionally, the ability of the circuit itself to operate at very low currents and voltages
provides further power efficiency opportunities. Furthermore, through the proposed
architecture, there is additional potential for using the minimum possible operating currents.
Unlike cascaded implementations (related works), this specific implementation can utilize
the full operating range of the circuit, operate at the minimum possible current, and handle
a large number of features as there is no current attenuation. Regarding the accuracy of the
results, it is primarily related to the approximation of the software model by the hardware.
This means that, if the model is too simple and the approximation is not optimal, the
accuracy will be low.

Table 3. Analog classifiers’ comparison on the cardiovascular prediction dataset.

Classifier Best Worst Mean Power Consumption Processing Speed Energy per Classification

This work 86.60% 78.40% 82.50% 430 nW 270 K classifications
s

1.59 pJ
classification

GMM [36] 85.20% 76.10% 81.12% 1745 nW 112 K classifications
s

15.6 pJ
classification

RBF [36] 84.30% 73.40% 80.77% 1940 nW 100 K classifications
s

19.4 pJ
classification

Bayes [36] 84.70% 75.40% 81.07% 984 nW 130 K classifications
s

7.6 pJ
classification

Threshold [36] 81.20% 72.40% 79.31% 734 nW 130 K classifications
s

5.65 pJ
classification

Centroid [36] 82.50% 77.30% 81.43% 1020 nW 112 K classifications
s

9.1 pJ
classification

SVM [36] 87.80% 79.60% 83.43% 9.73 µW 140 K classifications
s

69.5 pJ
classification

RBF [39] 85.90 79.90 82.55 15.61 µW 170 K classifications
s

91.82 pJ
classification

RBF NN [41] 79.30 72.50 77.51 1293 nW 270 K classifications
s

4.8 pJ
classification

SVM [42] 82.70 79.10 81.98 281.3 µW 870 K classifications
s

323.3 pJ
classification

MLP [50] 91.30 88.20 89.52 932.43 µW 930 K classifications
s

1.0 nJ
classification

K-means [55] 92.70 86.40 91.27 340.28 µW 5 M classifications
s

68.1 pJ
classification

Fuzzy [57] 87.10 79.30 84.41 972 nW 4.55 K classifications
s

213.6 pJ
classification

SVR [63] 91.40 86.70 88.67 123.76 µW 870 K classifications
s

142.26 pJ
classification

LSTM [71] 100.00 97.20 99.43 39.77 mW 870 M classifications
s

45.7 pJ
classification

6. Conclusions

This research pioneers a new methodology in an adjustable analog integrated Eu-
clidean (Manhattan) distance RBF classifier. By strategically manipulating MDC and WTA
circuits, the study showcases the ability to create RBF-based classifiers tailored to a wide
array of scenarios, accommodating varied class quantities, cluster setups, and data dimen-
sions. To demonstrate the adaptability and efficiency of this approach, the study applies the
proposed design methodology to analyze a distinct real-world dataset curated specifically
for diagnosing cardiovascular disease. Comprehensive evaluations and comparisons of
classification outcomes within these scenarios emphasize the efficiency of the proposed
methodology and validate the adjustments made. This innovative design approach holds
promise as a fundamental tool for crafting more-sophisticated and -precise diagnostic sys-
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tems, offering potential applications across diverse domains where flexible and adjustable
classifiers are pivotal for accurate analyses and predictions.
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